Bibliography
■315
34
B. W. Kooi, M. Aguiar, and N. Stollenwerk, (2013)
Bifurcation analysis of a family of multi-strain epidemiology models. J Comput Appl Math, 252:148-158, 2013.
35
B. W. Kooi, M. Aguiar, and N. Stollenwerk, (2014)
Analysis of an asymmetric two-strain dengue model. Math Biosci, 248:128-139, 2014.
36
B. W. Kooi, G. A. K. van Voorn and K. P. Das, (2011)
Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease, Ecol Complex, 8: 113-122, 2011.
37
A. A. Momoh and A. Fügenschuh, (2018)
Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper Res Health Care, 18:99-111, 2018.
38
G. G. Mwanga, H. Haario, and V. Capasso, (2015)
Optimal control problems of epidemic systems with parameter uncertainties: Application to a malaria two-age-classes transmission model with asymptomatic
carriers. Math Biosci, 261:1-12, 2015.
39
H. Nishiura, (2006)
Mathematical and statistical analyses of the spread of dengue.
Dengue Bulletin, 30(51):67, 2006.
40
P. Rashkov, (2021)
A model for a vector-borne disease with control based on mosquito repellents: a viability analysis. J Math Anal Appl, 498: 124958, 2021.
41
P. Rashkov and B. W. Kooi, (2021)
Complexity of host-vector dynamics in a two-strain dengue model. J Biol Dynam, 15: 35-72, 2021.
42
P. Rashkov, E. Venturino, M. Aguiar, N. Stollenwerk, and B. W. Kooi, (2019)
On the role of vector modeling in a minimalistic epidemic model. Math Biosci Eng, 16(5):4314-4338, 2019.
43
M. Recker, K. B. Blyuss, C. P. Simmons, T. T. Hien, B. Wills, J. Farrar, and S. Gupta, (2009)
Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc Royal Soc B, 276(1667):2541-2548, 2009.
44
F. Rocha, M. Aguiar, M. Souza, and N. Stollenwerk, (2013)
Time-scale separation and centre manifold analysis describing vector-borne disease dynamics. Int J Comput Math, 90(10):2105-2125, 2013.
45
H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres and A. Zinober, (2012)
Dengue disease, basic reproduction number and control, Int J Comp Math, 89(3):334-346, 2012.
46
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, (2016)
Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control. Math Meth Appl Sci, 39(16):4671-4679, 2016.
47
H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, A. C. Silva, C. Sousa, and C. Conceição, (2015)
Dengue in Madeira island. In Dynamics, Games and Science - International Conference and Advanced School Planet Earth, DGS II, Portugal, August 28-
September 6, 2013 (J-P. Bourguignon, R. Jeltsch, A. A. Pinto, and M. Viana, eds.), Springer International, 2015, pages 593-605.
48
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, (2014)
Vaccination models and optimal control strategies to dengue. Math Biosci, 247:1-12, 2014.
49
I. B. Schwartz, L. B. Shaw, D. A. T. Cummings, L. Billings, M. McCrary, and D. S. Burke, (2005)
Chaotic desynchronization of multistrain diseases. Phys Rev E, 27:066201, 2005.
50
M. O. Souza, (2014)
Multiscale analysis for a vector-borne epidemic model. J Math Biol, 68(5):1269-1293, 2014.
51
Y. A. McLennan-Smith and G. N. Mercer, (2014)
Complex behaviour in a dengue model with a seasonally varying vector population. Math Biosci, 248, 22-30, 2014.
52
N. Stollenwerk and P. F. Sommer, B. W. Kooi, L. Mateus, P. Ghaffari, M. Aguiar, (2017)
Hopf and torus bifurcations, torus destruction and chaos in population biology Ecol. Compl., 30, 91-99, 2017.
53
P. van den Driessche and J. Watmough, (2002)
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 180:29-48, 2002.
54
T-T. Zheng and L-F. Nie, (2018)
Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control. J Theor Biol, 443:82-91, 2018.